

## Microalgae for effluent treatment

An effective, *Sustainable*, *Circular*, and revenue-generating *Clean* technology

## The Need....and the opportunity

- Impact of *Climate Change* is well known and gets discussed in perhaps every important international convention of developed and developing nations.
- The manufacturing sector across the world is now being tasked to audit and reduce *Scope 1, Scope 2* and *Scope 3* carbon emissions.
- In the conventional effluent treatment processes, *Scope 1* and *Scope 2* emissions are usually significant. Hence, switching to more sustainable wastewater mitigation technologies will soon be a need of the hour for most companies.
- (NEED) An ideal sustainable option for wastewater mitigation in the manufacturing sector should:
  - $\circ$  Utilize less energy
  - $\circ~$  Result in very low carbon emissions
  - $\circ~$  Produce clean water, and
  - Provide a co-product opportunity to improve the circularity quotient of your carbon!
- (OPPORTUNITY) Microalgae-based effluent treatment technology
  - Relies on sunlight as a source of energy; suitable weather conditions and ample sunlight availability throughout the year over here!
  - Consumes carbon and emits oxygen
  - $\circ~$  Generates clean and compliant water suitable for discharge/ re-use
  - Produces microalgae-biomass for various end-use applications, thus recycling the carbon and nutrients from the manufacturing operations

## An Exciting Clean-Tech for Effluent treatment....

- Sustainable Sunlight, the primary source of energy for our process, is free of cost, non-polluting and plentiful
- **Environment friendly\*** O<sub>2</sub> released by algae, improves overall air and water quality in the environment
- > Effective (field data collected from one of our pilot-plant sites)



Lucrative – Renewable algae biomass generated has potential value as feed, food and organic fertilizer. Protein content > 50%, high-value fats > 10% and high mineral and antioxidant content.

\* – Most of the natural water body pollution by algae is from toxic blue-green algae (cyanobacteria), we are proposing use of beneficial green microalgae for this application

## How does our process work?

A short schematics-based animation to illustrate the process of pollutant abatement by photosynthetic microalgae.

PS – You will need to click multiple times on the next slide for the animation to execute



# Typical block-diagram for algae-based effluent treatment



## Algae versus other ETP options

| Parameter                    | Conventional effluent treatment                                                                                          | Microalgae                                                                                   |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|
| Oxidizing agents             | <ul> <li>Need to be added at high mixing energy costs</li> </ul>                                                         | <ul> <li>Generated by microalgae through photosynthesis using<br/>sunlight</li> </ul>        |  |  |
| рН                           | <ul> <li>Relatively narrow range tolerated once the<br/>process/ equipment are stabilized</li> </ul>                     | <ul> <li>Microalgae can perform in the range of 4-9 pH</li> </ul>                            |  |  |
| TDS/ Salinity                | <ul> <li>Values&gt; 5,000 mg/L impact processes and<br/>material of construction</li> </ul>                              | <ul> <li>Can perform at values in excess of 30,000 mg/L</li> </ul>                           |  |  |
| N, P etc.                    | Difficult/ expensive to remove                                                                                           | Decisive advantage through N, P, K removal                                                   |  |  |
| Metals incl.<br>heavy metals | Difficult/ expensive to remove                                                                                           | <ul> <li>Known ability of microalgae to sequester all metals from<br/>water</li> </ul>       |  |  |
| Operational exposure risks   | <ul> <li>High temperatures or deep &amp; anoxic water<br/>bodies, corrosive oxidizing agents, toxic off-gases</li> </ul> | <ul> <li>Shallow (&lt;30 cm deep) water bodies that emit oxygen!</li> </ul>                  |  |  |
| Carbon emissions             | Generated and released into the atmosphere                                                                               | Utilized by microalgae to produce more algal biomass                                         |  |  |
| Generated bio-<br>sludge     | Needs to be disposed                                                                                                     | <ul> <li>Platform feedstock for fuel, fertilizer, feed, biochemicals<br/>and food</li> </ul> |  |  |
| Carbon capture               | • None                                                                                                                   | Huge potential to integrate carbon capture with effluent treatment                           |  |  |

#### Why this technology makes more sense now?

- Microalgae-based effluent treatment can positively contribute towards mitigation of ill-effects from *Climate Change* by the virtue of being *Sustainable, Circular,* and *Clean*.
  - ➢ By primarily relying on natural sunlight for photosynthesis-mediated degradation of pollutants from the effluent, this process scores high on Sustainability.
  - ➢ By converting the waste organic carbon, nitrogen, phosphorus, and other nutrients, present in the effluent into nutritious, high-protein algal biomass with potential for use in the food, feed and fertilizer industry, this process also scores high on *Circularity*.
  - ➢ Finally, by generating clean water and releasing pure oxygen to the environment, this is essentially a Clean technology option for effluent abatement.

# Typical applications for algae-based effluent treatment

- 1. Food processing units that produce effluent with high concentrations of organic carbon, COD, BOD, nitrogen and other metals/ salts
- 2. Grain-based distilleries that produce thin slops
- 3. Molasses-based distilleries that produce spent-wash
- 4. Dairy operations
- 5. Aquaculture operations
- 6. Pharmaceutical industries that produce high COD, high BOD effluent
- 7. Industries that produce highly acidic effluent
- 8. Any set-up that produces high BOD, COD, organic carbon, nitrogen or phosphorus

### About Environalgae

- Company website <u>https://environalgae.com</u>
- \* Contact
  - 1. Email: <u>ninadg@gmail.com</u> or <u>ninad@environalgae.com</u>
  - 2. Phone: +91-8600140949
  - 3. Address: Environalgae, 1101 Millennium Empire, Plot 47 Sector 15, Near D-Mart, Kharghar, 410210 Maharashtra, India
- \* We are currently developing and demonstrating our process at pilot-scale for our customer. Its a novel, microalgaebased process that converts nutrients present in effluent from their agro-processing unit to high-value algal biomass for use as high-value feed for the aquaculture industry. Treated water generated from this process significantly exceeds the discharge specifications of the pollution control board.
- Video of our process demo at pilot-scale

On YouTube - <u>https://youtu.be/17b724g-i1M</u> On Vimeo - <u>https://vimeo.com/820440530/7ab9f3f906?share=copy</u>

### About Environalgae

Team with an ideal of youth and experience

- > Ninad Gujarathi, PhD (Proprietor and Founder)
  - Leadership experience in R&D, Techno-commercial, Manufacturing and Business roles, with proven track record of evaluating, conceptualizing, innovating, developing, scaling-up, delivering process & business solutions, and business growth.
  - Experience in conceptualizing, designing, executing, commissioning and operating some of the world's first and largest algaebased carbon capture and process effluent treatment plants.
- Rahul Patel, PhD (Chief Technologist)
  - Experience in developing cultivation biology process schemes, executing, commissioning and operating one of the world's first and largest algae-based carbon capture and process effluent treatment plants.
- Makarand Phadke, PhD (Mentor)
  - A distinguished innovator, scientist, and a senior business leader with over 35<sup>+</sup> years of experience in water and sustainability businesses across the globe
  - Experience in establishing and leading a major algae-based renewables project that included setting up one of the world's first and largest algae-based carbon capture plant.
- A team of THREE Biologists, FOUR Engineers and ONE supervisor to help our customers with research, development, designing, executing, and commissioning this emerging technology

## Why Environalgae?

- As a team, we are among the very few across the world to have experience in developing, demonstrating and executing microalgae-based effluent abatement projects
- > Significant experience in managing large and multi-national microalgae projects across the world
- Top management of the team are experienced R&D, technology & business leaders with illustrious corporate careers prior to establishing Environalgae
- > We develop & provide customized process technology solutions for your effluent treatment needs
- We follow a *phase-gate* approach with focus on developing and **demonstrating value-addition** at each stage of the project, prior to presenting a business case for further investment by customer
- > We are passionate about the environment and also about the potential of microalgae for meaningfully contributing towards resolution of some of the greatest climate challenges that mankind has ever faced

### Tentative Project Schedule for evaluating our process

| Phase                                                                         | Timeline in months |   |   |   |   |   |   |   |   |
|-------------------------------------------------------------------------------|--------------------|---|---|---|---|---|---|---|---|
|                                                                               | 1                  | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| Algal bioassays at Environalgae lab<br>SCIENTIFIC FEASIBILITY ASSESSMENT      |                    |   |   |   |   |   |   |   |   |
| Process development at Environalgae lab<br>TECHNICAL FEASIBILITY ASSESSMENT   |                    |   |   |   |   |   |   |   |   |
| Pilot studies at Environalgae's pilot-demo site<br>OUTDOOR VALIDATION STUDIES |                    |   |   |   |   |   |   |   |   |
| Design and execution of the full-size ETP plant                               |                    |   |   |   |   |   |   |   |   |
| Commissioning of the full-size ETP plant<br>EXECUTION & COMMISSIONIING        |                    |   |   |   |   |   |   |   |   |

## Some Preliminary Estimates on investment and environmental benefits from a generic Effluent Treatment Plant

CAPEX and OPEX numbers worked out in the Indian context

#### Preliminary workout on expected Financials

| Effluent generation rate                            | 300          | m³/day                     |
|-----------------------------------------------------|--------------|----------------------------|
| COD of incoming effluent                            | 3,000        | mg/L i.e. g/m <sup>3</sup> |
| COD consumption                                     | 150          | g COD/ m2-day              |
| Algae ponds footprint area required for treatment   | 1.5          | acres                      |
|                                                     |              |                            |
| CAPITAL REQUIRED                                    |              |                            |
| Lab, R&D and Pilot scale expenses                   | ₹ 3,300,000  |                            |
| Algae ponds (excluding cost of land)                | ₹ 4,545,000  |                            |
| Downstream processing system                        | ₹ 8,500,000  |                            |
| CONSULTING - Technology engineering commissioning   | ₹ 10,000,000 |                            |
| Total capital                                       | ₹ 27,345,000 |                            |
| Plant life in years (Depreciation)                  | 10           | years                      |
|                                                     |              |                            |
| OPERATING COSTS                                     |              |                            |
| Electrical                                          | ₹ 2,227,500  | per year                   |
| Nutrient costs & Chemical costs                     | ₹ 712,800    | per year                   |
| Manpower to operate the plant                       | ₹ 3,400,000  | per year                   |
| Maintenance costs                                   | ₹ 652,250    | per year                   |
| Total operating expense per year                    | ₹ 6,992,550  | per year                   |
|                                                     |              |                            |
| Algae produced per year (on dry basis)              | 59           | MT/year                    |
| Algae produced per year (on fresh weight basis)     | 594          | MT/year                    |
| Value as aquaculture feed/ organic fertilizer       | ₹ 35         | per wet kg algae           |
| Revenue from algae per year                         | ₹ 20,790,000 | per year                   |
|                                                     |              |                            |
| Total revenue from operations after cost accounting | ₹ 8,328,450  | Per year                   |
| Rate of return on Investment (ROI)                  | 30%          | per year                   |
| Payback period                                      | 3.3          | years                      |

 PS – Significant additional cost savings can be realized by the customer on account of reduction in NaOH usage as this process operates even better in acidic conditions (pH 4-5)

#### Sustainable & Clean Process with high Circularity of Carbon

| CO <sub>2</sub> equivalent Emissions Reduction (SUSTAINABLE PROCESS)                                    |          |                               |
|---------------------------------------------------------------------------------------------------------|----------|-------------------------------|
| Electricity consumed in the microalgal process                                                          | 297,000  | kWh/year                      |
| (Carbon foot-print of electricity in India)                                                             | 0.85     | kgCO <sub>2</sub> /kWh        |
| Carbon emissions because of electricity consumed in the microalgal process                              | 252      | MT/year                       |
| Total COD treated                                                                                       | 297      | MT/year                       |
| CO <sub>2</sub> emissions avoided by not allowing that COD to be converted to CO <sub>2</sub>           | 408      | MT/ year                      |
| Net CO <sub>2</sub> emissions reduction                                                                 | 156      | MT/year                       |
|                                                                                                         |          |                               |
| O <sub>2</sub> released from the process because of microalgal photosynthesis (CLEAN TECHNOLOGY)        |          |                               |
| Assumed O <sub>2</sub> generation rate                                                                  | 80%      | of Max                        |
| Max O <sub>2</sub> generation rate (theoretical; from literature)                                       | 0.00573  | moles O <sub>2</sub> / g-hour |
| biomass concentration in the ponds                                                                      | 0.5      | g/L                           |
| O <sub>2</sub> productivity (assumed)                                                                   | 0.002292 | moles O <sub>2</sub> / L-hour |
|                                                                                                         | 0.073344 | g O <sub>2</sub> /L-hour      |
|                                                                                                         | 132.0    | kg/hour                       |
| <b>O</b> <sub>2</sub> generation (and release in to the environment) expected                           |          | kg/day                        |
|                                                                                                         | 349      | MT/year                       |
|                                                                                                         |          |                               |
| Renewable microalgal biomass wet-cake generated from the process ( <mark>CIRCULARITY OF CARBON</mark> ) | ~600     | MT/year                       |